Increasing stimulus size impairs first- but not second-order motion perception
نویسندگان
چکیده
منابع مشابه
Increasing stimulus size impairs first- but not second-order motion perception.
As stimulus size increases, the direction of high-contrast moving stimuli becomes increasingly difficult to perceive. This counterintuitive effect, termed spatial suppression, is believed to reflect antagonistic center-surround interactions--mechanisms that play key roles in tasks requiring sensitivity to relative motion. It is unknown, however, whether second-order motion also exhibits spatial...
متن کاملCentrifugal bias for second-order but not first-order motion.
Limited-lifetime Gabor stimuli were used to assess both first- and second-order motion in peripheral vision. Both first- and second-order motion mechanisms were present at a 20-deg eccentricity. Second-order motion, unlike first-order, exhibits a bias for centrifugal motion, suggesting a role for the second-order mechanism in optic flow processing.
متن کاملPsilocybin impairs high-level but not low-level motion perception.
The hallucinogenic serotonin(1A&2A) agonist psilocybin is known for its ability to induce illusions of motion in otherwise stationary objects or textured surfaces. This study investigated the effect of psilocybin on local and global motion processing in nine human volunteers. Using a forced choice direction of motion discrimination task we show that psilocybin selectively impairs coherence sens...
متن کاملIncreased sensitivity to speed changes during adaptation to first-order, but not to second-order motion
Observers adapted to drifting patterns varying either in luminance (first-order pattern), or in contrast (second-order pattern). Sensitivity to increases or decreases in the speed of the first-order pattern increased sharply as adaptation time increased, but sensitivity to speed changes of the second-order pattern remained unchanged throughout the adaptation time. Adaptation of first-order moti...
متن کاملNeural heterogeneities determine response characteristics to second-, but not first-order stimulus features.
Neural heterogeneities are seen ubiquitously, but how they determine neural response properties remains unclear. Here we show that heterogeneities can either strongly, or not at all, influence neural responses to a given stimulus feature. Specifically, we recorded from peripheral electroreceptor neurons, which display strong heterogeneities in their resting discharge activity, in response to na...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Vision
سال: 2011
ISSN: 1534-7362
DOI: 10.1167/11.13.22